Engineering electrodeposited ZnO films and their memristive switching performance.

نویسندگان

  • Ahmad Sabirin Zoolfakar
  • Rosmalini Ab Kadir
  • Rozina Abdul Rani
  • Sivacarendran Balendhran
  • Xinjun Liu
  • Eugene Kats
  • Suresh K Bhargava
  • Madhu Bhaskaran
  • Sharath Sriram
  • Serge Zhuiykov
  • Anthony P O'Mullane
  • Kourosh Kalantar-Zadeh
چکیده

We report the influence of zinc oxide (ZnO) seed layers on the performance of ZnO-based memristive devices fabricated using an electrodeposition approach. The memristive element is based on a sandwich structure using Ag and Pt electrodes. The ZnO seed layer is employed to tune the morphology of the electrodeposited ZnO films in order to increase the grain boundary density as well as construct highly ordered arrangements of grain boundaries. Additionally, the seed layer also assists in optimizing the concentration of oxygen vacancies in the films. The fabricated devices exhibit memristive switching behaviour with symmetrical and asymmetrical hysteresis loops in the absence and presence of ZnO seed layers, respectively. A modest concentration of oxygen vacancy in electrodeposited ZnO films as well as an increase in the ordered arrangement of grain boundaries leads to higher switching ratios in Ag/ZnO/Pt devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure study of electrodeposited ZnO nanowires

In this work, we report on the structure study of electrodeposited ZnO nanowires. The samples were mounted as a working electrode and the deposition was performed in a classical three electrodes electrochemical cell. For obtaining ZnO nanowires, the working electrode was a polycarbonate membrane with a random distribution of nanometric pores, gilded one side to ensure electric contact. The morp...

متن کامل

Synthesis and characterization of controlled metal nanostructures for electrochemical applications

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Nguyet Doan Name of the doctoral dissertation Synthesis and characterization of controlled metal nanostructures for electrochemical applications Publisher School of Chemical Technology Unit Department of Chemistry Series Aalto University publication series DOCTORAL DISSERTATIONS 177/2016 Field of research Physical Chemistry Ma...

متن کامل

Spin memristive magnetic tunnel junctions with CoO-ZnO nano composite barrier

The spin memristive devices combining memristance and tunneling magnetoresistance have promising applications in multibit nonvolatile data storage and artificial neuronal computing. However, it is a great challenge for simultaneous realization of large memristance and magnetoresistance in one nanoscale junction, because it is very hard to find a proper spacer layer which not only serves as good...

متن کامل

High Photocatalytic Performance in the Photodegradation of MB Dye of Photocatalytic Efficiency of ZnO/Fe3O4 and TiO2/Fe3O4 Under Visible Light Irradiation

     Zinc Oxide (ZnO) nanorods and titanium dioxide (TiO2) nanostructures thin films were prepared onto glass substrates by the chemical bath deposition (CBD) method. The ZnO was structured as nanorods (NRs) while TiO2 was formed as nanoflowers plate as confirmed by Field-Emission Scanning Electron Microscope (FESEM) images. The ZnO/Fe3O4 and TiO2/Fe3O4 nanostructures thin films were prepared v...

متن کامل

Electrodeposition of Nanostructured ZnO Thin Film: A Review

In this review paper, a critical analysis was carried out to investigate the effect of cathodic potential, bath temperature, time and nature of substrates on the ZnO thin films synthesized by electrodeposition technique. XRD patterns of the various deposited films were studied to examine the structural characteristics of the Nanostructured ZnO thin films. From the XRD patterns of the different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 25  شماره 

صفحات  -

تاریخ انتشار 2013